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Abstract: To achieve highly dexterous manoeuvre with many degrees of freedom is of significant importance to 

perform normal hand-like movements. We present a powerful tool, Myoelectric Interface for Computer and 

Human Interaction (MIRCHI), which can be used in prosthesis, physiotherapy and Gaming technology. 

MIRCHI is useful for people undergoing upper limb prosthesis. Unlike most of the exiting prosthesis tools which 

are dynamic subject- or task-specific, the proposed system takes input from the muscle of the subject using 

surface electromyography sensors and generates corresponding movements with the aid of some predefined 

mapping functions. We have tested different movements from various subjects. Results show that the subject is 

able to make custom movements with lot of ease. The entire system is developed in Ubuntu 12.04 LTS and 

OpenGL is used for GUI.   
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I. Introduction 
Myoelectric refers to the electrical properties of muscle tissue from which impulses may be amplified, 

used especially in the control or operation of prosthetic devices. Muscle contractions can be classified using 

pattern recognition of myoelctric signals and this work is being carried out since 1960’s [1]. There is a great 

mismatching between the results obtained from myoelectric control and clinical practice. This is due to the fact 

that most of the EMG systems in the clinics have single or dual myoelectric signal amplitude-based control 

strategies [2]. These systems have limitations and in order to achieve many degrees-of-freedom (DoF), we need 

advanced control schemes. Pattern recognition has repeatedly shown the capacity to discriminate between many 

classes of motion [1] and, as such, is a logical candidate. The challenge becomes a matter of bridging the gap 

between theoretical, offline research and a real-time, clinically viable solution. This not only indicates a need for 

a real-time implementation of pattern recognition based myoelectric control, but also a presentation style which 

can be accepted by, and mutually beneficial to, both the research and clinical communities. The analysis of 

myoelectric signals and processing is still a good research field. MES processing techniques have been widely 

analyzed and they continue under research. The classical analog processing systems have been very reliable in 

psychoanalysis robotics [3]. However, since some years ago, improvements in signal processors rely on digital 

processing [4-6]. Recently, high-end digital processors are used in myoelectric processing and analysis. The 

present work focuses on developing a simple yet powerful interface to provide interaction between amputees 

and a robotic arm. The rest of the paper is organized as follows. In section II, we discuss on few issues related to 

the present work in II, and we then discuss about the proposed work along with the details of both hardware and 

software in II. This is followed by discussions and results. 

 

II. Related Work 
Since 1970s, many algorithms have been developed to train a decoder for a given user. Machine 

learning techniques are used to develop a specific decoder based on a set of training data. Classification 

techniques such as neural networks [7], [8], support vector machines [9], [10], [11] and random forests [12], 

among others, are commonly used for a discrete set of commands. For continuous commands, black-box 

modeling [13] and regression methods [14] are most common. However, studies by Ajiboye et al. have 

suggested that only a sparse set of natural muscle synergies are user-independent and form a low-level basis for 

muscle control [15]. Moreover, the system is highly nonlinear and it is very difficult to achieve good decoding 

accuracy even when it is trained on a single user [16]. As a result, these machine learning techniques currently 

result in decoders that are highly user-specific, training intensive, and limited in accuracy, all of which hinder 

the general performance of myoelectric controlled interfaces. In more closely related work, closed-loop 

myoelectric controlled interfaces are further investigated by Radha Krishnan et al. in [17] to understand human 
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motor learning. As in [18], two decoders, classified as intuitive and non-intuitive, decode EMG signal amplitude 

from eight muscles to generate a 2-D cursor position. The intuitive decoder maps six of the eight muscles to a 

vector along the 2-D plane that is most consistent with the action on the limb when the muscle contracts. The 

non-intuitive decoder maps six of eight muscles randomly along equally spaced vectors in the 2-D plane. 

Subjects are able to learn the decoders in both experiments, with performance trends best fit by exponential 

decay. Additionally, the results show that the intuitive decoder helps subjects achieve better performance 

initially, but the non-intuitive decoder has a steeper learning rate that made performance for both decoders 

almost equal after 192 trials. 

Pistohl et al. [19] compare subject performance for two different myoelectrically controlled tasks. The 

first task is a standard cursor control task, similar to [17]. The second uses a similar mapping function, but with 

removed redundancies such that each muscle operates individual fingers of a robotic hand. The mapping 

function is intentionally made nonintuitive to users in order to emphasize a steeper learning curve. The results 

show similar performance trends when given visual feedback for both cursor control and hand control, 

indicating that subjects are able to learn separate models to effectively reach the goal in both tasks. This 

previous research has established that humans are capable of forming inverse models for various decoders when 

presented with closed loop feedback. This paper uses myoelectric interface augmented with the control variable 

mapping to provide a closed-loop feedback control for subject-learning process. 
 

III. Proposed Work 
A. Setup 

The study comprises of experiments performed on various subjects which are designed to identify 

whether each subject is able to do the given control tasks. We have used Muscle sensor Kit V3 from Advancer 

Technologies [20]. It has two-channels and is designed to be used directly with a microcontroller. These sensors 

do not output a raw EMG signal but rather an amplified, rectified, and smoothed signal that will work well with 

a microcontroller’s analog-to-digital converter (ADC).  

 
Fig. 1 Block Diagram 

 

The experiments are carried out by changing the positions of electrodes for each movement. The block 

diagram of the entire setup is shown in Fig. 1. The electrodes of the muscle sensor kit are connected to the 

muscles of the subject. The analog signal generated by the electrodes because of muscle actions, which is 

sampled at 1 KHz, rectified, and low-pass filtered, is given to the ADC. The ADC is designed using Arduino 

UNO [21]. The digital output is then fed to the serial port of PC and a C program is written to interpret the data. 

The control tasks are made visible to the subject by providing a Graphical User Interface (GUI) which acts as a 

closed-loop feedback system for the subject. This GUI is developed using OpenGL [22]. This entire 

environment is created in Ubuntu 12.04 LTS Operating System.  
 

B. Tasks and Mapping Functions 

We have designed the system to provide a total of eight different movements. A computer screen 

infront the subject displays a ball at its center. The task of the subject is to move the ball in the desired direction. 

Myoelectric signals are obtained from four different muscles of the arm which are namely i) Biceps Brachii 

(BB),  ii) Triceps Brachii (TB), iii) Flexor Carpi Radialis (FCR), iv) Extensor Carpi Ulnaris (ECU).  The 

mapping functions transform the EMG amplitudes to control signals in required proportions.  
 

 
Fig. 2 Working Model of MIRCHI 
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The working model of the system is shown in Fig. 2. The entire process is divided into two threads, 

Thread 1 and Thread 2. In Thread 1, the analog data from the muscle sensor is converted into digital by the 

ADC and this digital data is made available on the device’s serial port. Thread 2 read data from the device’s port 

and process this data, then applies mapping function on the data to generate the corresponding movement. The 

POSIX standard threads [23] are used. A driver has been development to for communication between Arduino 

and PC Serial port. The flowchart of the system in Fig. 3 gives a complete picture of the entire system process. 

The hardware model of the muscle sensor kit powered with a battery is shown in Fig. 4. Fig. 5 shows the 

interfacing of the muscle sensor kit with the Arduino. RS-232 cable is used to connect Arduino to serial port of 

the PC. 

 

 
Fig. 3 MIRCHI Flow Chart 

 

C. OpenGL 

OpenGL is a platform-independent API (application programming interface) for rendering 3-D 

graphics. A big advantage of using OpenGL is that it is a widely supported industry standard. OpenGL defines a 

set of functions for doing computer graphics. OpenGL was specifically designed to be platform-independent, so 

it would work across a whole range of computer hardware – not just Silicon Graphics machines. The 

combination of OpenGL’s power and portability led to its rapid acceptance as a standard for computer graphics 

programming. It provides 3D geometric objects, such as lines, polygons, triangle meshes, spheres, cubes, 

quadric surfaces, NURBS curves and surfaces. It supports the manipulation of images as pixels, enabling frame-

buffer effects such as antialiasing, motion blur, depth of field and soft shadows. 
 

 
Fig. 4 Powering the Muscle Sensor Kit 
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Fig. 5 Interfacing the Muscle Sensor Kit with Arduino 

 

 
Fig. 6 Movement Diagonally Left-up 

 

  
Fig. 7 Movement Diagonally Left-down 

 

 
Fig. 8 Movement Diagonally Right-down 
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Fig. 9 Movement Diagonally Right- up 

 

 
Fig. 10 Movement Horizontal Right 

 

 
Fig. 11 Movement Horizontal Right 

 

 
Fig. 12 Movement Vertical up 
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Fig. 13 Movement Vertical down 

 

IV. Results 
The results of the various movements are shown in Fig. 6 to Fig. 13. Fig. 6 shows the movement in the 

diagonal left upward direction. Fig. 7 shows diagonal left downward movement. Similarly, Fig. 8 shows 

movement in the diagonal right downward direction and Fig. 9 shows movement in the diagonal right upward 

direction. Fig. 10, Fig. 11, Fig. 12 and Fig. 13 shows movements in horizontal right, horizontal left, vertical up 

and vertical downward movements respectively. 

 

V. Conclusion 
We have proposed a myoelectric interface which can be used in prosthesis and robotic applications. 

The use of mapping functions makes the system independent of subject specific and task specific prosthesis 

systems. More importantly, it is evident that there is no need for user-specific decoders as long as the user has 

the knowledge about the mapping function exiting between neural activity and control task command. The 

system uses simple electronic components which are readily available and is cost-effective. Efficiency of the 

system can be improved by increasing more number of channels which increases number of simultaneous 

movements. The system can further be used in various fields such as Physiotherapy, Gaming and Entertainment. 
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